A Multiple Care of Addresses Model

Bruno Sousa, Marco Silva
CISUC, University of Coimbra
Polo II, Pinhal de Marrocos
3030-290, Coimbra, Portugal
Email: bmsousa,mfsilva@dei.uc.pt

Abstract—Resilience, load balancing and ubiquitous support
can be improved by multihoming configurations that explore
the plurality of wireless technologies available nowadays. Nev-
ertheless, efficient multihoming configurations require support
from all layers, as for instance in, network protocols which must
incorporate mechanisms to support multiple addresses. Multiple
Care of Addresses Registration (MCoA) is a protocol that extends
Mobile IPv6 to enable the registration of multiple addresses.

This paper presents mCoA++, our publicly available
simulation model for OMNeT++ which implements the Multiple
Care of Addresses Registration protocol recently standardized
by IETF. Filling a gap in the MCoA specification, mCoA++
incorporates cross-layer mechanisms that tailor address selection
according to application requirements. We evaluate our mCoA++
implementation and compare simulation code performance with
xMIPv6. We find that mCoA++ adds multiple care of address
support in OMNeT++ without introducing any significant
overhead.

Keywords — MIPv6, Multiple CoA, Multihoming, OMNeT++,
mCoA++, mobility modelling, and performance

I. INTRODUCTION

Multihoming support is emerging as a strong feature for
modern devices which typically move in areas with overlap-
ping coverage. Multiple Care of Address Registration (MCoA)
[1] is a recent recommendation which specifies the registration
of multiple addresses enabling multihoming in MIPv6 nodes.

Different approaches may be followed to explore multiple
addresses in mobile networks. HIPSim++ [2] is an implemen-
tation of the Host Identity Protocol (HIP) in OMNeT++, that
supports multiple addresses. Nevertheless, HIP is not compat-
ible with MIPv6, thus MIPv6-aware nodes have no mecha-
nism to explore multiple addresses. Another implementation
explores multipath at the transport layer [3], by extending
the Stream Control Transport Protocol (SCTP) to support
concurrent multipath transfers. Once again, this solution does
not allow MIPv6 nodes to support multiple addresses without
the assistance of another protocol such as SCTP.

The Capacity-aware preferred Multiple Care of Address
(CAPMCoA) [4] allows a mobile node to choose a CoA
from the several addresses, based on the best throughput
of a specific link-address pair. CAPMCoA does not meet
requirements of today’s applications, since it only considers
a throughput metric. That is, applications interested in paths
with low delay have no benefit with CAPMCoA. In addition
the implementation is not publicly available and refers to an

Kostas Pentikousis
Huawei Technologies
European Research Center
Carnotstrasse 4, 10587 Berlin, Germany,
Email: k.pentikousis @huawei.com

Marilia Curado
CISUC, University of Coimbra
Polo II, Pinhal de Marrocos
3030-290, Coimbra, Portugal
Email: marilia@dei.uc.pt

old version of the MCoA specification [5]. Whilst the WIDE
project [6] adds Multiple Care of Address support to NEMO
[7] implementation, it is based on an old version of MCoA.

Resorting to the related work, we found that there is
no public and up to date implementation of MCoA [1] in
common networks simulators (e.g., ns2, OMNeT++). Thus,
we embarked on developing mCoA++ for OMNeT++ based
on xMIPv6 [8], as it is an accurate implementation of MIPv6.
Moreover, xMIPv6 and mCoA++ are implemented in OM-
NeT++ [9], a discrete event simulator that is gaining commu-
nity attention, due to its possibility of including frameworks
for different purposes (e.g., Ad-Hoc, wireless sensor networks,
etc).

mCoA++ is the first implementation of MCoA in OM-
NeT++. The contributions of this paper and mCoA++ are
four-fold: First, mCoA++ is an implementation that is freely
available [10] to the community for further development/en-
hancement and use. Second, mCoA++ implements the MCoA
protocol based on the lastest specification [1] and includes
support for two major types of address use, ALL- all the ad-
dresses are used simultaneously and SINGLE- current address
is chosen randomly or from the first advertisement received.
Third, mCoA++ comprises mechanisms that enable address
selection synchronisation between application and network
layers, as this improves multihoming support [11]. Fourth, this
paper presents how mCoA++ can be used and presents proof-
of-concept results for the implementation and how mCoA (i.e.
OMNeT++ implementation: mCoA++) compares with MIPv6
(i.e. OMNeT++ implementation: xXMIPv6).

Potential users of mCoA++ include researchers working
in multihoming, who aim to perform comparisons between
MCoA and other approaches. mCoA++ can be extended to
include other proposals, as it is freely available, and can be
used to test applications in multihoming environments or to
mitigate flow issues in Mobile IPv6 networks.

This paper is organized as follows: Section II provides an
overview of the MCoA protocol. Section III details mCoA++
model and Section IV describes our evaluation methodology.
Section V details the accuracy results of mCoA++ implemen-
tation and Section VI presents application performance results.
Section VII concludes this paper.

II. MULTIPLE CARE OF ADDRESS

Mobile IPv6 performs the binding of a single care of address
(CoA), which is a limitation for Mobile Nodes (MNs) with
multiple interfaces/addresses. The Multiple Care of Address
Registration (MCoA) protocol [1] addresses this limitation by
extending Mobile IPv6 to support the registration of multiple
Care of Addresses (CoAs). MCoA introduces a new Binding
Identification (BID) number to identify bindings, thus allowing
multiple CoAs to be bound to the home address.

MCoA also introduces enhancements in the Binding Update
(BU) messages to include the Binding Identifier Mobility Op-
tion that contains the BID(s) to register. On the reception event
of a BU message, the Home Agent (HA) and/or Correspondent
Node (CN) create or update the respective bindings in the
Binding Cache (BC). To support multiple bindings for a home
address, the Binding Cache lookup is performed by the home
address and the BID pair, as opposed to MIPv6 that relies
only on the home address. If the HA or the CN do not support
registration of multiple addresses, they acknowledge the MN
in the Binding Acknowledge (BA), so that in the next message
exchange MN resorts to standard MIPv6.

The Binding Identifier Mobility Option is included in the
Binding Acknowlegment (BA), Home Address Test (HoT) and
Care of Address Test (CoT) messages. This option includes
several fields, such as the length that depends on the IP version
(e.g. IPv4 or IPv6), the Binding ID and the status field, which
reports the registration state of the respective CoA.

When the MN wants to register, it generates a Binding ID
(value between 1 and 65535) per address, and sends a BU
message to HA and CNs, keeping the BID in the Binding
Update List (BUL). When the MN has several addresses to
register, it can use the bulk registration mode that includes
several Binding Identifier mobility options in a single BU
message. The bulk registration, where a single BU message
conveys multiple BID options, is only supported with the HA.
Thus, the registration with the CN must be performed per
address, to avoid issues with the return routability procedure.

We note that MCoA does not specify how the multiple
registered addresses can be used. For instance, if the addresses
can be used simultaneously or if a Care of Address is chosen
based on link characteristics. This open specification can be
tailored to the specific application requirements. For instance,
real-time applications are interested in a link/CoA with smaller
end-to-end delay, while data applications in a link/CoA with
higher (nominal) capacity.

III. MCOA++: MULTIPLE CARE OF
ADDRESS MODEL

We start the overview of our implementation of Multiple
Care of Address Registration in OMNeT++[9], which we
dubbed as mCoA++, with design considerations.

Our mCoA++ implementation aims at two major goals:
mCoA++ ought to be RFC 5648 [1] compliant and should
not break the compatibility with MIPv6. To satisfy the latter
goal, we started by deriving mCoA++ from xMIPv6 [8§]
implementation in OMNeT++. xXMIPv6 was chosen because it

implements all the features of MIPv6 for mobility management
(e.g. tunnel creation/modification/deletion) and it is a flexible
framework for easy extensions. As mentioned above, the
way the multiple addresses can be used is not specified in
RFC 5648. Taking this into account, we implemented two
major types of use, namely, ALL and SINGLE. In both cases
all interface addresses are registered and a separate tunnel is
created for each address. However, with ALL, applications use
the several addresses simultaneously by replicating packets for
each tunnel, while with SINGLE, only one address is used.

Mobile IPv6 informs upper layers (e.g. applications) when
tunnels are created/deleted to assure that the addresses chosen
by applications are valid (reachable through a certain path).
The cross-layer mechanisms, herein implemented rely on the
notification schemes of the INET framework, which imple-
ments protocols such as SCTP and IPv6.

In our implementation the application chooses the type
of use. For instance, data applications may be interested on
addresses associated with paths with higher bandwidth, while
VoIP applications are interested on paths with reduced end-
to-end delay. This approach is inline with recent proposals
for cross-layer design, including architectures based on IEEE
802.21 (http://www.ieee802.0org/21/), for example. Thus, we
expect that mCoA++ can be used as valuable building block in
simulation studies of cross-layer architectures and evaluations
of mobility management solutions, among others.

A. Classes and Nodes

Table I summarizes new classes introduced and modified
ones in mCoA++. The class MCoA is added in the network
layer of the MN, HA, and CN nodes. This class/module has no
connections to other modules since no messages are exchanged
between them and to keep the compatibility with xMIPv6
model. The MCoA class works as a configuration class, and
the respective configuration directives are implemented in
the xMIPv6 class, for instance in SendPeriodicBU ().
Moreover, the class MCoA configures several MCoA param-
eters in MIPv6 aware nodes. The m_prohibited indicates if
a node supports the registration according to MCoA. Stan-
dard MIPv6 corresponds to m_prohibited = true. The
m_bulk_reg_prohibited flag indicates if a node supports bulk
registration. The mc_sim_home_and_foreign_prohibited flag
allows the simultaneous use of home and foreign interfaces.
The TypeUseMCoA is a string field to define the type of use
to employ for the registered addresses. The possible values
defined in the MCoADefs . h file, include ALL, SINGLEFIRST
and SINGLERANDOM. Moreover, the deregisterALL is an
integer field to indicate how the deregistration should be
performed (e.g., 1 to deregister one-by-one).

The xMIPv6 class is the core class of the Mobile IPv6
implementation, as such major features for MCoA support
were coded in this class. Several data structures were mod-
ified to accommodate information about BIDs. For instance,
KeyTimer and InterfaceCoAList were modified to
include the BID field, as well as the respective search methods.
In addition, new data structures were introduced to hold the

Class Purpose Class Modification detail

KeyMCoABind Key in the Binding Update List (BUL) and BindingCache Introduce new key, KeyMCoABind.
Binding Cache (BC). BindingUpdateList Introduce new key.

KeyMCoOADAD For operations with Duplicate Address Detection IPv6Tunneling Include notification of created/deleted tun-
(DAD). nels.

XMIPv6SM State Machine for MIPv6 operation. IPVv6 Allow activation and de-activation of IPv6

IPv6TunAdr Information for created/deleted tunnels. forwarding to simulate errors at the network

IPv6PrefAdr Information about preferred address. layer.

TABLE I: Classes in mCoA++

tuples of CoA and BID pairs - CoABIDList and to hold the
node supported MCoA capabilities - NodesMCoACap. New
methods were introduced to accomplish different tasks. For
instance the get_and_calcBID () is the method responsi-
ble for the BID assignment, implementing rules to avoid the
Home address of MN to be included in the CoABIDList. The
method get_adr_from_bid () retrieves an address from
a BID number. The getMIPv6CoA () method is responsible
for the active address selection, which takes into consideration
if the node has initiated returning home operations, and the
type of use to employ to the multiple care-of addresses.
When MIPV6 is initiated, timers to enable the creation of
bindings are created (e.g. KEY_BUL). These timers are created
for the HA and for each CN (identified in the CNListBID).
When sending Binding Updates, sendPeriodicBU ()

method, the MCoA support is checked, which
restricts the fulfillment of MobilityBIDOptions.
The destination of binding messages 1is considered,

therefore the set_mobilityoptions_for_ha()
method is employed if registering with the HA while
set_mobilityoptions_for_cn() method is used
when registering with the CN. These methods set the
MobilityBIDOptions according to the BIDs defined
in the CoABIDList. On the BU message reception, HA
and CN process this message type, checking each option
in the MobilityBIDOptions. Timers to expired entries,
refresh request timers are created, as well as the respective
tunnels. MN is informed about the registration operation in
the HA and CN through BA messages, which also convey the
Mobility Options. MN proceeds according to the status of the
BA message. On a successful binding operation, MN updates
the BUL and initiates the return routability procedure for
each BID, if the BA message comes from the HA. Tunnels
are created according to the source of the BA message.

The returning home operation involves several operations
(e.g., remove addresses, deregister BID) that are triggered in
the returningHomeMCoA () method. When deregistering,
the tunnels are removed and the timers are created with
bindinglifetime = 0. The state machine XMIPv6SM is
also updated. In order to allow the MN to roam again, a
notification message is employed to guarantee that all the
auxiliary structures and respective states are initialized.

B. Headers and Mobility Options

mCoA++ includes support for the Binding Identifier Mobil-
ity Option, MobilityBIDOptions. This option includes a
status field for the BID, a flag to indicate if it is a home binding
Hflag, and the respective BID key.

Messages that can include information about BIDs were
modified to include support for a vector of Binding Identifier
Mobility Options, such as BU, BA, Home Test Init (HoTI),
Home Test (HoT), Care of Test Init (CoTI), Care of Test (CoT),
Binding Refresh Request (BRR) messages.

C. Notifications

The notification NF_MIPv6_MN_RETURNED_HOME is
subscribed by the MIPv6 class, which sends a message to
perform cleaning operations after returning home.

In order to allow applications to be acknowledged
about routing optimization that exists with corre-
spondent nodes, the NF_IPv6_TUNNEL_ADDED and
NF_IPv6_TUNNEL_DELETED notifications were added,
so that an application could know when all the routing
processes, at the network layer, are ready to forward traffic
via optimized routes. Thus, a node is notified when a tunnel
is created and deleted, respectively.

Also, in a cross-layer fashion, applications can
set the preferred address they intend to wuse. The
NF_MCOA_APP_PREFERED_ADDRESS notification is

used to inform the network layer about the preferred address
selected by applications and the respective priority.

D. MCoA Application Support

In order to receive notifications about the creation of tunnels
and to utilize the information received on such notifications,
applications have to be extended. The class MCoAUDPBase
is a base class for UDP applications. This class contains in-
formation about sockets, namely source, destination addresses
and sockets id, adrsAvailable. The class MCoAUDPBase
implements methods for diverse socket bindings and unbind-
ings, and methods for sending packets according to the type
of use configured. In the method sendToUDPMCOA (), the
application sends packets according to the typeU se:

o ALL, packet is duplicated for n addresses.

e SINGLERANDOM, preferred address is chosen ran-

domly from the adrsAvailable vector.

e SINGLEFIRST, packets are sent to the first address.

The MCoAUDPBase class works as a base class that can
be used by other applications. Initially it performs binding to
the default port and addresses configured, but when receiving
notifications about the creation and deletion of tunnels, it per-
forms the socket binding using the information received with
the notification messages (e.g., source, destination addresses).
On the deletion operation, the socket (identified by an integer)
is marked as deleted to avoid using this socket on future events.

The MCoAUDPBase class includes various parameters that
affect the MCoA operation. The localPort on which socket

—_

List 1: MCoA application example code

List 2: Configuration Example

int sockID=bindToPort(localPort, ipSrc_Address);
// msg = new cPacket();
if (useMode == MCOA_TUN_ALL_ADR_SINGLE RR){
int idx (int)intrand (lenAdrs);
IPvXAddress adrtoSend = adrsAvailable[idx].mSrc;
sendToUDP(msg, adrtoSend, srcPort,
destAddr, destPort, appendCtrlinfo);

// Unbind operation
unBindPort(localPort, ipSrc_Address, sockID);

O O 0NN B W

bindings should be done, the possible destAddresses, the use-
Mode parameter that dictates the type of use (values according
to MCoADefs.h) and the isDestiny flag indicates if the node
is acting as receiver true, or sender false.

Applications needing MCoA facilities need to
extend MCoAUDPBase class and implement their own
sending mechanisms, (sending rate, packet size). The
MCoAVideoStreamCli, MCoAVideoStreamServer
implement a video MCoA-capable application, and
MCoAUDPApp implements a VoIP MCoA-capable application
with the possibility of requesting echo of messages.

List 1 provides some excerpts of code that exemplify
the creation and use of MCoA in UDP applications. Line
1 depicts the binding to a local port. The bindToPort
returns a socket ID for future operations (e.g. unbinding
operation). Lines 4-5 exemplify random address selection.
Line 6-7 call the send method that appends control infor-
mation to the message (source and destination addresses).
The last line illustrates the deletion of socket, by perform-
ing the unbinding operation. Further details on the usage
can be found on the applications MCoAVideoStreamCli,
MCoAVideoStreamServer and MCoAUDPApp that are
included in the mCoA++ code [10]. The first implementation
of mCoA++ only included UDP applications, future releases
will accommodate support for TCP applications, as well.

E. Configuration

The current FlatNetworkConfigurator6 module
configures the whole simulation as a big subnet. In addition,
it assigns a simple prefix per router. To enable the adver-
tisements of several prefixes by a router, and to have dis-
tinct networks, the MCoANetConf 6 module was introduced.
This module implements addOwnAdvPrefixRoutes ()
and addStaticRoutes () methods to add the advertise-
ment prefixes and static routes, for routers and hosts, re-
spectively. All prefixes can be configured in a XML file, as
illustrated in List 2. This implementation provides flexibility
to configure more realistic network scenarios.

IV. EVALUATION METHODOLOGY

The evaluation has two purposes: First, validate the
mCoA++ model through a comparison with xMIPv6. Second,
demonstrate the wide-applicability of mCoA++ in multihom-
ing context (e.g., several addresses).

<interface name="‘‘ethl” AdvSendAdvertisements="‘on">
<AdvPrefixList>
<AdvPrefix AdvOnLinkFlag="‘‘on” AdvValidLifetime="‘4"
AdvPreferredLifetime="‘4" AdvAutonomousFlag=""‘on”
advRtrAddr=‘‘on” rtrAddr=‘2001:db8::0299:2B2>>
2001:db8::0299:00/112 </AdvPrefix>
<AdvPrefix AdvOnLinkFlag=‘‘on” AdvValidLifetime="‘4"
AdvPreferredLifetime="‘4" AdvAutonomousFlag="‘‘on”
advRtrAddr="‘‘on” rtrAddr=‘2001:db8::0199:2B2">
2001:db8::0199:00/112 </AdvPrefix>
</AdvPrefixList>
<inetAddr tentative="‘‘off”>
2001:db8::0299:2B2 </inetAddr>
<inetAddr tentative="‘‘off™>
2001:db8::0199:2B2 </inetAddr>
</interface>
</local>

wn

The simulation scenario includes the correspondent node
network, the home network and two foreign networks. Multi-
ple prefixes are advertised on the foreign networks (Subnet #1,
and #2). Moreover, router R2 is connected to both networks,
and router R/ advertises multiple prefixes on Subnet #1. The
Wi-Fi technology (IEEE 802.11b) is employed due to its
wide employment. The ethernet connections are configured
with a transmission delay of /0ms, while the links simulating
an Internet connection, between routers Ra-Rb and routers
Ral-Rb have a propagation delay of 30ms. Internet links
have associated higher propagation delays in comparison to
Ethernet links. The scenario also encompasses Video and VoIP
applications. Video transmits at a constant rate of 50ms with a
packet size of 5008, to simulate video streaming, while VoIP
applications are set with packet interval of 10ms (G.723.1).

MN velocity was considered with 3km/h and 30km/h
speeds, in order to emulate pedestrian and vehicular speeds.
In addition, the rectilinear, Rect, and random way point, Rwp,
mobility models were considered. Network failures were in-
troduced, to assess the advantages of using multiple addresses,
namely resilience. The network failures include disruption of
IPv6 forwarding facilities with a duration of 150ms and are
generated each 20s between R/ and R2 routers.

Different ways of using the multiple available addresses
were considered. MCoA_ALL uses all the addresses simul-
taneously, MCoA_SINGLE_FIRST chooses the first CoA,
MCoA_SINGLE_RANDOM chooses a CoA randomly from the
several that are available, while MIPv6 corresponds to the
standard Mobile IPv6. In addition the bulk registration mode
is enabled for the registration procedures with MCoA cases.

We compare the results (from 100 runs) achieved with
MCoA and MIPv6, since MIPv6 accuracy has already been
demonstrated on the xMIPv6 implementation [8], through dif-
ferent tests. As in the xXMIPv6 [8] and Mobility Management
Simulation Engine for IPv6 (MMSEV6) [12] we used the time
of handover Tj;o and the signalling cost metrics. The time of
handover T, includes delay between movement detection
and node registration at the CN tcr. We measured THo
according to the following: Tryo = tcr — tassoc, in order

Video VolP
. . . .
8 . L L L : : :
. . . .
H . .]
6
O
T4
°©
a
1]
s
<]
°
52
T
. .
o 9 o 9 o 9 o 9 n 92 o 9 o 9 o 9
S ® S 8 3 & 5 S =
-4 4 = = T T © © -4 4 = = T T © ©
J o @ £ g g > =2 J 2 @ £ 2 2 2 2
T T 4 g € £ & 4 T I 4 g £ £ & 4
< <« O 9 <« <« = = < <« © 9 9« <« = =
8 8¢ ¢35 38 38¢¢3% 8
= = s = = = = =

Test cases with 03km/h and 30km/h speeds
Fig. 1: Handover Time for Video and VoIP applications on MCoA ALL, MCoA ONE

First (MCoA Fir), MCoA ONE Random (MCoA Rnd) and MIPVG6 test cases.
to be agnostic of layer 2 handover delay. ¢t 4550 corresponds
to the instant on which the MN associates with an Access
Point, tcr corresponds to the time where tunnels are created
or destroyed due to the reception of a successful registration
(receive BA).

The signalling cost is based on the total signalling cost,
which corresponds to the sum of the message size of the most
common signalling MIPv6 messages, namely BU, BA, CoTlI
and HoTI. The message size, in bytes, includes header(s) size
and respective payload size.

V. MCOA++ PERFORMANCE

All results include a confidence interval of 95%. We com-
pare handover latency results from mCoA++ implementation
with the xMIPv6 implementation [8]. To assess mCoA++
performance, router advertisements are configured with min
= 0.03s and max = 0.07s, a similar set of xMIPv6 evaluation.
Fig. 1 shows handover delay for Video and VoIP applications
in different speeds and configuration tests. Single test cases
of mCoA++ have similar delay and are equal to the delay
in the MIPv6 test cases. This corresponds to no performance
degradation in mCoA++, in comparison to xMIPv6. regarding
the handover delay. The mean delay in the MCoA ALL test
cases is higher then in MCoA single and MIPv6 tests. The
registration of multiple addresses and their simultaneous use
require the establishment of tunnels for each address. While in
MCoA single and MIPv6 cases only one tunnel is established
in the MCoA ALL test cases multiple tunnels are created, one
per each registered address, consequently handover delay is
higher. The 30km/h cases have more handovers, around ~ 12
in opposition to ~ 2 for 3km/h speed cases. In all the test
cases with 30km/h the handover delay has more variations
(e.g., increased area in boxplots).

Despite the gain in Resilience (see Sec. VI), MCoA has
drawbacks, namely in the signalling cost. The modified sig-
nalling messages in the MCoA specification include Mobility
Options, which carry information for each address to register.
The single binding nature of MIPv6, only registers one care
of address. MCoA, by enabling the registration of multiple

Video VolP

i [] H [} 8 Legend
30000 T _-— — -
. . . . e B8
.
. . . E3BA
25000
20000
@
2
B
15000
£
E
S
@) == 7= = < = T
g
k]
5000 | === —=— = -
= ==
@ o @ 9 @ 9 ® o © o ©@ 9 @ 9 ® o
8 8 8 8 8 8 38 8 8 8 8 8 8 8 38 8
Jd d & & 82 2 ¢ ¢ Jd d & & 82 2 ¢ ¢
T T 4 £ £ &£ & & T T 4 £ £ & & &
<« < 9 O <« <« = = <« €« 0 9 <« <« = =
838¢¢353% §8¢¢3%38
s = s = s = s =

Test cases with 03km/h and 30km/h speeds

Fig. 2: Total signalling cost for Video and VoIP applications on MCoA ALL, MCoA
ONE First (MCoA Fir), MCoA ONE Random (MCoA Rnd) and MIPv6 test cases.

Video VolP

0.12 — =

0.11

0.10

One-way Delay (s)

o
o
©

1

|
|
|

MIPv6_03
MIPv6_30
ICoA ALL_30
MIPv6_03
MIPv6_30

MCoA ALL_03
MCoA ALL_30
MCoA Fir_03
MCoA Fir_30
MCoA Rnd_03
MCoA Rnd_30
ICoA ALL_03
MCoA Fir_03
MCoA Fir_30
MCoA Rnd_03
MCoA Rnd_30

s =

Test cases with 03km/h and 30km/h speeds

Fig. 3: One-way delay for Video and VoIP applications on MCoA ALL, MCoA ONE
First (MCoA Fir), MCoA ONE Random (MCoA Rnd) and MIPv6 test cases

addresses, introduces more overhead, as per Fig 2. Signalling
messages in mCoA++ convey multiple binding options, one
per address. In addition, the number of handovers introduces
more overhead as further messages are exchanged. Signalling
cost between all the MCoA cases (ALL, ONE FIRST, ONE
RANDOM) is similar since all the addresses are registered.
As such, the several addresses are conveyed in the Mobility
Options of signalling messages.

Both handover latency and signalling cost results depict
the accuracy of mCoA++ implementation in comparison to
xMIPv6. First, results are similar regarding handover latency.
Second, mCoA++ introduces higher signalling costs.

VI. APPLICATIONS PERFORMANCE

Packet loss measurement relies on the lost message se-
quences. That is, each packet sent by the application is
numbered and on arrival event, packet loss ratio is determined
based on the sequences that were not received. This method-
ology was applied to VoIP and Video applications, since
duplicated packets could lead to faulty results. Duplicated
packets, for each tunnel in the MCoA ALL mode, do not affect

App. Speed MCoA ALL MCoA ONE First | MCoA ONE RANDOM MIPv6
Rect Rwp Rect Rwp Rect Rwp Rect Rwp
VoIP 3km/h 1.43 15.90 1.43 15.90 1.44 13.72 11.32 | 17.39
VoIP | 30km/h | 35.11 | 55.06 | 34.80 58.69 35.08 56.52 52.66 | 63.60
Video | 3km/h 1.40 16.49 1.41 17.13 1.43 16.49 17.53 | 20.90
Video | 30km/h | 3533 | 56.65 | 35.35 57.30 35.33 56.74 56.49 | 64.67

TABLE II: Applications Packet Loss (%)

the payload (e.g. message sequence numbers), only headers
(employed as control information) are modified, according to
the respective tunnels.

To analyse the performance of applications, we can establish
a relation between packet loss and resilience, by which higher
packet loss ratios represent lower resilience levels. Within
higher speeds (e.g. 30km/h) and with random way point
mobility model, the level of resilience is minimized. Nodes
can move to areas without coverage of Access Points, or
have higher packet loss ratios due to increased handover
delay at layer 2. MCoA-aware applications improve their
resilience levels, even with higher speeds, as illustrated in
Table. II for Video and VoIP applications. The registration
of multiple addresses is the key of such improvement. We
can argue, based on the achieved results, that MIPv6, due to
its single-binding nature does not provide resilience support.
With MIPv6, applications can have packet loss ratios around
~ 17.5% with low speeds and moving rectilinearly. With the
single MCoA test cases (First and Random) the use of a fixed
address (e.g., the first to be configured) does not provide any
gain in the performance as it leads to higher packet loss when
compared to the approach of choosing an address randomly.

One-way delay is determined by relying on message times-
tamps. Each message sent is also timestamped and on the
reception event, one-way delay is calculated as being the
difference between the received time and the message creation
time. One-way delay, depends on the underlying technology.
In addition, different channel propagation delays are associated
to the fixed links, to simulate Ethernet and Internet connec-
tions, respectively. Fig. 3 depicts one-way delay results. With
3km/h all the tests have similar values, around ~ 0.08s, with
increased speeds delay has some variations. In random and first
mCoA++ cases, the address selected might be associated with
a path with more failures. In addition, VoIP applications are
more susceptible to higher speeds, due to their higher ratios.

MCoA can enhance application performance by increasing
levels of Resilience or supporting optimized path selection
mechanisms (e.g., select a path with lower end-to-end delay).
Application performance results obtained with mCoA++ put
in evidence two aspects: First, MCoA per si is not synonym
of performance gain, for instance the cost of using all the
addresses is higher. Finally, applications and network proto-
cols must have synchronized path selection schemes to meet
application requirements.

VII. CONCLUSION AND FUTURE WORK

This paper introduced mCoA++, our publicly available
implementation of MCoA for OMNeT++ [10], and evaluated it
comparatively with xMIPv6. The mCoA++ simulation model
extends xMIPv6 significantly and enables the registration

of multiple care of addresses. Our simulation results show
that mCoA++ adds MCoA support in OMNeT++, without
introducing any significant overhead when compared with the
base xXMIPv6 code for typical simulation scenarios.

We anticipate that the research community will find our
contribution particularly useful. For example, using mCoA++
researchers can now model and evaluate networks with mul-
tiple address configurations in OMNeT++, something which
is not possible with vanilla xXMIPv6. Another example where
mCoA++ can serve as a foundation is the evaluation of
multimedia applications over multiaccess mobile networks,
as well as the evaluation of flow mechanisms for mobile
IPv6 networks. Our next steps in further developing mCoA++
include the implementation of Flow Bindings [13].

VIII. ACKNOWLEDGMENTS

Bruno Sousa acknowledges the support of the PhD grant
SFRH/BD/61256/2009 from Ministério da Ciéncia, Tecnologia
e Ensino Superior, FCT, Portugal. The work has been sup-
ported by the TRONE project CMU-PT/RNQ/0015/2009.

REFERENCES

[11 R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst, and K. Nagami,
“Multiple Care-of Addresses Registration,” IETF RFC 5648, 2009.

[2] L. Bokor, S. Noviczki, L. T. Zeke, and G. Jeney, “Design and Evaluation
of host identity protocol (HIP) simulation framework for INET/OM-
NeT++,” in MSWIM’09. ACM, 2009.

[3] T. Dreibholz, M. Becke, J. Pulinthanath, and E. Rathgeb, “Implementa-
tion and Evaluation of Concurrent Multipath Transfer for SCTP in the
INET Framework,” in SIMUTOOLS ’10, ICST, 2010, pp. 1-8.

[4] J.-Y. Pan, J.-L. Lin, and K.-F. Pan, “Multiple Care-of Addresses Regis-
tration and Capacity-Aware Preference on Multi-Rate Wireless Links,”
AINA workshops 2008, pp. 768-773, March 2008.

[51 R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst, and K. Nagami, “
Multiple Care-of Addresses Registration,” IETF Internet Draft: draft-
ietf-monami6-multiplecoa-03, 2008.

[6] R. Kuntz, “Deploying Reliable IPv6 Temporary Networks Thanks to
NEMO Basic Support and Multiple Care-of Addresses Registration,”
SAINT 07, pp. 4646, January 2007.

[71 V. Devarapalli and R. Wakikawa and A. Petrescu and P. Thubert,
“Network Mobility (NEMO) Basic Support Protocol,” IETF Request
for Comments: 3963, January 2005.

[8] FE. Z. Yousaf, C. Bauer, and C. Wietfeld, “An Accurate and Extensible
Mobile IPv6 (xMIPV6) Simulation Model for OMNeT++,” in SIMU-
Tools ’08. ICST , 2008, pp. 1-8.

[9] K. Wehrle, M. Giines, and J. Gross, Modeling and Tools for Network
Simulation. Heidelberg: Springer, 2010.

[10] B. Sousa, “mCoA++: Multiple Care of Address Registration in
OMNet++.” [Online]. Available: http://mcoa.dei.uc.pt

[11] O. M. Raoof and H. Al-Raweshidy, “Game Theory and an Interface
Selection Mechanism for Multi-homed Mobile Nodes,” ISCC, pp. 616—
623, Jul. 2008.

[12] F. Z. Yousaf, C. Miiller, and C. Wietfeld, “A Comprehensive MIPv6
Based Mobility Management Simulation Engine for the Next Generation
Network,” in SIMUTools ’10. 1CST, 2010, pp. 1-8.

[13] G. Tsirtsis, H. Soliman, N. Montavont, G. Giaretta, and K. Kuladinithi,
“Flow Bindings in Mobile IPv6 and Nemo Basic Support ,” Internet
Draft: draft-ietf-mext-flow-binding (work in progress), October 2010.

